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Towards Understanding the Security of Modern Image Captchas and
Underground Captcha-Solving Services

Haigin Weng, Binbin Zhao, Shouling Ji*, Jianhai Chen, Ting Wang, Qinming He, and Raheem Beyah

Abstract: Image captchas have recently become very popular and are widely deployed across the Internet to defend
against abusive programs. However, the ever-advancing capabilities of computer vision have gradually diminished
the security of image captchas and made them vulnerable to attack. In this paper, we first classify the currently
popular image captchas into three categories: selection-based captchas, slide-based captchas, and click-based
captchas. Second, we propose simple yet powerful attack frameworks against each of these categories of image
captchas. Third, we systematically evaluate our attack frameworks against 10 popular real-world image captchas,
including captchas from tencent.com, google.com, and 12306.cn. Fourth, we compare our attacks against nine
online image recognition services and against human labors from eight underground captcha-solving services. Our
evaluation results show that (1) each of the popular image captchas that we study is vulnerable to our attacks;
(2) our attacks yield the highest captcha-breaking success rate compared with state-of-the-art methods in almost
all scenarios; and (3) our attacks achieve almost as high a success rate as human labor while being much faster.
Based on our evaluation, we identify some design flaws in these popular schemes, along with some best practices
and design principles for more secure captchas. We also examine the underground market for captcha-solving
services, identifying 152 such services. We then seek to measure this underground market with data from these

services. Our findings shed light on understanding the scale, impact, and commercial landscape of the underground

market for captcha solving.
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Computers and Humans Apart (Captcha)' ™ is a widely
used method to increase the security of websites. As
shown in Fig. 1, the most popular captchas that are
deployed in real world can generally be classified as
either text captchas or image captchas. Image captchas
require a user to semantically understand the images in
areceived captcha and perform identification operations
(e.g., select semantic images or click semantic regions)
according to the on-screen guidance. Nowadays, image
captchas are ever more popular because, compared
to text captchas, they are more user-friendly and
considered more secure. According to a report from
Tencent’s captcha service, about 1 billion users have
solved image captchas (cloud.tencent.com). GEETest
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(a) Text captcha

(b) Image captcha

Fig. 1 Examples of text captchas and image captchas.

(www.geetest.com), another captcha service, reports
that they provide image captchas for over 200000
top websites, including tripadvisor.cn, airbnb.com,
and jingdong.com. Google reveals that ReCaptcha
challenges are solved as a rate of millions per day
(www.google.com/recaptcha/intro/).

1.1 Popular image captchas

Currently, popular real-world image captchas can be
roughly classified into three types as shown in Table 1:
selection-based image captchas!?!, slide-based image
captchas, and click-based image captchas®®!. Selection-
based captchas ask a user to select candidate images
with specific semantic meanings from a set. ReCaptcha,
released by Google in 2014, is the most widely used
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selection-based captcha. In April 2018, about 0.5%
of the entire Internet, including 4.7% of the top 1
million sites, 7.3% of the top 1 x 10° sites, and 10.9%
of the top 1 x 10* sites, used ReCaptcha to block
abusive programs. Slide-based captchas request a user
to slide a puzzle to the correct part of an image. Tencent
SlidePuzzle is a typical slide-based captcha, employed
by many large-scale web services (e.g., qzone.qq.com,
which is reported to have 0.56 billion of active users
per month). Click-based captchas require a user to
click specific semantic regions in an image. Both
GEE TouClick and Netease TouClick are representative
click-based captchas. In this paper, we evaluate the
security of all three of these captcha types.

1.2 Status quo

Ever since it was first mooted, image captcha has been
considered as a good alternative to text captcha since it
carries richer information, has more room for variation,
and is much easier for a human user to complete
while being harder for a machine. The security and
robustness of text captchas have been widely studied
by the research community with many kinds of generic
solvers and anti-recognition or defensive techniques

Table 1 Summary of evaluation.
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(e.g., rotation and distortion) being proposed, along
with design guidelines and suggestions for increased
security”"'?!. The security of image captchas, on the
other hand, is still in need of more comprehensive study.
Specifically, existing works either focus on synthetic
image captchas!!>14l, or on some particular cases of
captcha schemes (e.g., ReCaptcha 2015)5:61,

At the same time, the ever-advancing capabilities of
computer vision and machine learning are gradually
diminishing the security of image captchas and making
them vulnerable to attack!'>~'°!. It is reported that the
cognitive ability of a machine can now outperform a
human in some complex recognition tasks'?’!. Exposed
to such powerful techniques, image captchas might
become vulnerable. For example, in 2016, Sivakorn et
al.;! utilized deep learning techniques to solve one of
the most popular image captcha schemes, ReCaptcha.
Ya et al.!% applied advanced vision techniques to break
image captchas from 12306.cn. Also, many commercial
companies have deployed powerful online services to
undertake vision tasks, such as image classification and
object detection, and these services can be maliciously
used by abusive programs to break image captchas.

Moreover, there exists a large-scale profit-seeking
underground market for captcha-solving services,
which support solving almost all types of captchas and
significantly threaten the captcha security. For example,
ruokuai.com provides services for breaking text, image,
and audio captchas. The money involved in the now
defunct captcha-solving service qadati.cn is reported
to be as much as $3.18 million (kqga.qfc.cn/news/d-
1786.html). ruokuai.com, a currently operating captcha-
solving service, says that it receives 900 million service
requests daily.

Image captchas have increasingly popular, being
used by many of the world’s biggest websites —
including Google, Facebook, and Tencent— to prevent
abusive programs. A comprehensive evaluation on the
security of image captchas is urgently needed for (1)
understanding the vulnerability of image captchas, (2)
designing more robust and secure image captchas, and
(3) helping website providers defend against abusive
programs.

1.3 Methodology

In this paper, we propose three simple yet effective
generic attacks, SelAttack, SliAttack, and CliAttack,
against selection-based, slide-based, and click-based
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image captchas, respectively. Our attacks are mainly
based on advanced vision techniques and a series of
image classification and objection detection models.

First, we evaluate our attacks on 10 popular real-
world image captcha schemes provided by top websites,
including Google, Facebook, Tencent, and Netease. To
our knowledge, seven out of these 10 schemes had
never been reported broken prior to this work. Of the
10 schemes, our attacks achieve a 45% — 70% success
rate on three (GEE TouClick, Tencent TouClick, and
Netease TouClick), a 70% — 89% success rate on a
further three (ReCaptcha 2015, ReCaptcha 2018, and
Facebook), and a 90% — 100% success rate on the
remaining four (China Railway, GEE SlidePuzzle,
Tencent SlidePuzzle, and Netease SlidePuzzle).

We then compare our three attacks with online
recognition services. Specifically, we compare our
attacks with nine recognition services provided by
five top websites, namely Google, Microsoft, Tencent,
Alibaba, and Face++. We evaluate these recognition
services on seven specific captcha schemes (i.e.,
ReCaptcha 2015, ReCatpcha 2018, Facebook, China
Railway, GEE TouClick, Tencent TouClick, and
Netease TouClick). Compared with our attacks, these
recognition services, despite their claim, do not achieve
satisfactory attack results with the exception of Google.
Nonetheless, they still have the ability to break all of
the tested captchas considering to the captcha design
goal that holds a captcha scheme to be broken when the
attacker is able to achieve a precision of at least 1%,
We also find that when equipped with Google’s service
we can achieve an acceptable success rate of about 0.45
against some schemes.

Further,
underground

we employ human labor from eight

captcha-solving services, including
ruokuai.com, 2captcha.com, and anti-captcha.com,
to manually break the same 10 real-world captcha
schemes as evaluated by our attacks. We find that our
attacks outperform those of the most proficient human
laborers on four captcha schemes (China Railway,
GEE SlidePuzzle, Tencent SlidePuzzle, and Netease
SlidePuzzle). For the remaining six schemes, the gap
between our attack results and those of human labors is
acceptably narrow.

Note that for selection-based captchas, we also
compare SelAttack with two existing state-of-the-art
attack methods!> %!, The evaluation results suggest that

SelAttack is more effective, both in terms of success rate
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and speed (the time of solving a captcha challenge). In
summary, we compare SelAftack with two state-of-the-
art methods, image recognition services and human
labor. We compare the other two attack frameworks
only with image recognition services, since to our
knowledge they are not reported to have been broken
before and thus there are no existing methods of
attack to use as benchmarks. Table 1 summarizes the
captcha schemes, existing state-of-the-art attacks, APIs
of image recognition services, and captcha-solving
services that are evaluated in this paper.

1.4 Measurement of the underground market

As part of our research, we identify 152 underground
captcha-solving services. Based on these 152 services,
we measure the underground market, finding that on
average each service has about 3000 laborers available
24/7 and a daily income of about $1 million. We
then investigate the landscape of the underground
market. We find that this market supports almost all
captcha categories, including text, image, and game
captchas, and meets demand from a great many
potential consumers, including account enumeration
attackers, third-party services, malicious promotion
apps, and coupon stealers.

1.5 Design flaws and countermeasures

Based on our evaluation and findings, we identify
several design flaws in popular captcha schemes: (1)
selection-based captchas use a limit number of image
categories, machine-encoded text hints, and easily
recognizable candidate images; (2) slide-based captchas
repeatedly use the same images to generate challenges
and employ vulnerable malice detection algorithms or
even omit such detection for reasons of implementation
convenience; (3) click-based captchas fail to apply
advanced anti-recognition techniques (e.g., rotation) on
distorted characters; and (4) some captcha providers
even use the same image set to generate challenges
for different schemes. From the results of our attacks,
the evaluation of powerful recognition services, and
the study of underground captcha-solving services, we
devise a set of best practices and design principles for
website providers to design secure captchas. We believe
that our design principles will be useful for designing
more secure image captcha techniques in the future.

1.6 Contributions

We summarize our contributions as follows:

e Security of popular image captchas. We
implement three simple yet powerful generic attack
frameworks that can be used to break a variety
of real-world captcha schemes. Our attacks are
powerful because they (1) conduct a comprehensive
offline analysis for each captcha scheme, (2) collect
sufficient data based on this offline analysis, and
(3) train accurate and specific image recognition
and detection models. Conducting proof-of-concept
attacks, we successfully break 10 real-world captcha
schemes from popular websites, including google.com,
facebook.com, tencent.com, and 12306.cn. We also
test the effectiveness of popular image recognition
services, and underground captcha-solving services.
The evaluation results suggest that our attacks are very
powerful and are comparable to human captcha-solving
services in terms of attack speed and cost-effectiveness.

e Analysis of the underground captcha-solving
services. Based on the 152 identified underground
services, we conduct a comprehensive measurement of
the scale, landscape, and the impact of the underground
captcha-solving services. Our findings shed light on the
large yet not widely investigated underground economy
of captcha-solving services.

e Countermeasures towards secure image
captchas. Based on our evaluation results, we identify
several design flaws in the currently most popular
image captchas. We also distill the details of our
attacks, our evaluation results, and the identified design
flaws into a set of best practices and design principles
for website providers to design more secure image
captchas.

e Disclosure of design flaws. We have submitted
reports with our findings and recommendations to each
of the captcha providers involved in the study. Of these
providers, Tencent and Netease have responded to our
reports and acknowledged our findings. We hope that
the disclosure of these findings will result in more
robust and secure captcha services.

1.7 Roadmap

The rest of this paper is organized as follows: Section 2
provides the background information and reviews the
related work. Section 3 introduces the range of popular
captchas that we study in this paper. Sections 4, 5, and
6 detail the proposed attack frameworks and describe
the corresponding evaluations of attacks on popular
real-world captchas. Section 7 provides our study of
the underground market for captcha-solving services.
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Section 8 addresses the design principles of image
captchas and suggests several attack countermeasures.
Section 9 discusses the results of the paper, and
Section 10 concludes the paper.

2 Background and Related Work
2.1 Threat model

In practice, there are three approaches that adversaries
may take to solve image captcha challenges: using
automated captcha breaking attacks, using image
recognition services, and hiring human labor.

In this paper, we study all the three of these
approaches. In relation to automated approaches, we
design three attacks and evaluate them against 10
popular real-word captcha schemes. For recognition
services, we leverage online image classification and
object detection services to solve image captchas. For
manual attacks, we hire human labor from a broad range
of underground captcha-solving services to break real-
world captchas.

To frame the research, we provide background
knowledge and review related work covering four
aspects: first, we review the most widely used image
captchas; second, we outline the existing techniques for
attacking image captchas; third, we give an account
of the advanced vision techniques and online image
recognition services that are currently available; and
fourth, we detail popular underground captcha-solving
services.

For completeness, we first summarize some
representative works on text captchas, the earliest
and most traditional form of captchas. Specific

9~ have been

attacks!-®121 and generic solvers!
proposed against text captchas. The security issues
faced by text captchas have been extensively studied,
such as anti-recognition or defensive techniques (e.g.,
rotation and distortion), and many works have also
provided design guidelines and suggestions for more
secure text captchas.

Image captchas have now become popular and
many existing works therefore focus on the design
and analysis of image captchas. Ahn et al.lll first
proposed the use of distorted images of animals for
captcha design. Chew and Tygar'?! proposed three
image captchas based on naming images, distinguishing
images, and identifying an anomalous image out of a
set. Elson et al.>!! presented Asirra, a selection-based
image captcha that asks a user to identify only the cats
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out of 12 images of both cats and dogs. With the
popularity of face recognition, human faces began to
be employed in multiple captcha schemes. Misra and
Gaj!??! presented the first captcha scheme based on face
recognition, requesting a user to identify two images
belonging to the same person. Kim et al.[*3! proposed
Age-CAPTCHA, a captcha scheme that requires a user
to annotate images of human faces with their age
group. Based on facial authentication, Uzum et al.[**!
proposed the real time Captcha (rtCaptcha) system,
which requires a user to perform a known authentic
video or visual act (e.g., smile or blink) to figure out
the captcha solution.

In addition to the research community, many
commercial companies have released various image
captcha schemes. The currently popular real-world
image captchas can be roughly classified into three
types, as shown in Table 1: selection-based image
captchas!®!, slide-based image captchas, and click-
based image captchasl®!. Selection-based captchas (e.g.,
ReCaptcha) ask a user to select candidate images with
specific semantic meanings from a set, slide-based
captchas (e.g., Tencent SlidePuzzle) require a user to
slide a puzzle to the correct part of an image, and click-
based captchas (e.g., Netease TouClick) request a user
to click specific semantic regions on an image.

Rather than studying captchas that are not yet
deployed, this paper focuses on the security of real-
world captchas, because we believe such a study to be
more meaningful for understanding the security of the
existing captcha ecosystem.

2.2 Existing attacks

Some methods of attack against image captchas have
been previous devised. Golle!'*! proposed a simple
classifier to break the Asirra system. Lorenzi et al.[*’]
proposed a web service based attack against image
captchas, employing three web-services (i.e., reverse
image search, image similarity search, and automatic
linguistic annotation), to identify the images embedded
in a challenge. And they also proposed a recognition
based attack against image captchas!'#!, in which they
examined three synthetic captchas: SQ-PIX, ESP-PIX,
and Asirra. Most recently, Sivakorn et al.’! designed a
novel attack on ReCaptcha that leveraged deep learning
techniques. Ya et al.[®! also developed a novel learning
approach in constructing a large association graph,
and then applied this graph to break captchas from
12306.cn.
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Our work diverges from the aforementioned attacks
in the following ways. First, we focus on real-world
captchas used by major websites (e.g., google.com,
tencent.com, and 12306.cn) instead of targeting
captchas that have not yet been deployed. Second,
different from Refs. [5, 6], which proposed specially-
designed attacks against a few particular cases of
selection-based captchas, we develop three generic yet
powerful attack frameworks. Our attacks are also more
effective and efficient; for example, we achieve a high
success rate of 90% against the China Railway scheme,
which is employed by 12306.cn, the largest ticketing
system in China. Third, we also comprehensively study
the security of click-based and slide-based captchas; to
the best of our knowledge, this is the first time it has
been done. Fourth, we evaluate the captcha-breaking
capacity of both image recognition services and also
the manual attacks provided by underground captcha-
solving services. Finally, we conduct a study measuring
the underground market for captcha-solving services
estimating its scale, impact, and commercial landscape.

2.3 Computer vision and
services

image recognition

Recently, research into computer vision has been
revolutionized by deep ConvNets!!>2% and great
success is being achieved in many basic vision
tasks, such as image classification and objection
detection. For example, Convolutional Neural Network
(CNN) has been successfully applied to analyze visual
imagery, and has proven to be very effective in
areas like image classification!!>!. Regions with CNN
features (RCNN)!'®! and its many variants (i.e., Fast-
RCNNI[7 Faster-RCNNU7 YOLO!!8!, and SSD!))
have significantly improved object detection accuracy.
In our attacks, we employ advanced mage classification
and object detection techniques to recognize images and
detect distorted characters.

Benefiting from these advanced vision techniques,
many commercial entities also deploy online services
to perform various tasks, including image classification
services, character recognition services, and object
detection services. For example, Google, Microsoft,
Baidu, Tencent, Alibaba, and Face++ all provide
cloud vision APIs for powerful image analysis. These
APIs can be utilized to some extent to perform
attacks against image captchas. In our research, to
evaluate the performance of these services and permit
a comprehensive comparison with our attacks, we

test four image classification services (GoogleAPIO,
TencentAPI®, MicrosoftAPI®, and AlIAPI®) and
five character recognition services (BaiduOCR®,
TencentOCR®,  GoogleOCR®,  AlIOCR®, and
Face++0OCR®). We select these particular classification
services since they are the most popular in the research
community, and these particular character recognition
services because they are widely used in recognizing
Chinese characters (many of the studied captchas in
this paper are in Chinese) and claim to achieve a high
level of recognition accuracy.

The captcha arms race has created to a large-
scale underground market for captcha-solving services,
which mainly operate by hiring human labor to
solve captchas. Motoyama et al.[?8 explored the inner
working mechanisms of captcha-solving services, while
Shin et al.®! analyzed the functionality of a popular
forum spam automator, revealing that it can intelligently
bypass many of the practices used to distinguish
humans from bots.

Motivated by previous work, for our research, we
also hire human labor from underground captcha-
solving services to manually attack popular captcha
schemes. Specifically, we employ eight captcha-
solving services (ruokuai®, yundama®, dama2,
hyocr®, 2captcha®, AntiCaptcha®, DeCaptcha®, and
imagetype®) to target different captcha schemes. We
select these particular services because (1) they support
the captcha schemes studied in this paper, as detailed
in Section 3; (2) they are popular and widely used by
miscreants; and (3) some of them have been used in
previous work!>:28
study measuring the underground market for captcha-
solving services. Different from Ref. [29], our study
focuses on the resolution of novel image captchas, and
looks at the scale and commercial landscape of the

1. In our research, we also conduct a
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underground market, and the impact of this market on
benign users and industries.

3 Popular Real-World Image Captchas

To collect
consult the Alexa list of the most used websites
(www.alexa.com/topsites) , and identify four top sites
that provide image captcha services to other sites,
namely, ReCatpcha, GEETest, Tencent, and Netease
(www.163.com). We collect a total of eight schemes
from these sites. Additionally, we collect two schemes
of selection-based captchas from sites that design their
own captchas: 12306.cn and facebook.com. Table 2

representative image captchas, we

summarizes the 10 schemes we collect to establish our
study.

The 10 collected schemes all fit into the three popular
image captcha categories: selection-based captchas,
slide-based captchas, and click-based captchas. In this
paper, we use this broad range of captchas to evaluate
the effectiveness and efficiency of our attacks. Below,
we show the design and workflow and provide an

example of each.
3.1 Selection-based image captchas

For selection-based captchas, we collect four popular
schemes, namely ReCaptcha 2015, ReCaptcha 2018,
Facebook, and China Railway.

ReCaptcha, offered by Google, aims to verify users
if possible without requiring them to actually solve a
tedious challenge. ReCaptcha first requires a user to
click a checkbox and calculates a confidence score for
this user according to many risk factors returned by the
checkbox, e.g., browser characteristics and google.com
cookies. ReCaptcha then returns a selection-based
captcha for users with low scores, whereas users with
high scores can directly pass the challenge without any

Table 2 Summary of real-world image captchas.

Type Scheme Provider Scale
ReCaptcha 2015  ReCaptch
Selection- -apteha -apteha O (million) users
based ReCaptcha 2018  ReCaptcha
’ China Railway 12306.cn  O(billion) users
captcha
Facebook Facebook —

Slide- GEE SlidePuzzle
based Tencent SlidePuzzle
captcha Netease SlidePuzzle

GEETest O(2 x 10°) sites
O(billion) users
O(billion) users

Tencent
Netease

Click- GEE TouClick GEETest O(2 x 10°) sites
based Tencent TouClick ~ Tencent  O(billion) users
captcha  Netease TouClick Neteast  O(billion) users
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further authentication.

In this paper, we mainly focus on the selection-based
captchas returned by ReCaptcha. ReCaptcha has two
versions, namely ReCaptcha 2015 and ReCaptcha 2018.

ReCaptcha 2015. Figure 2a shows an example of
ReCaptcha 2015. This challenge contains one sample
image and nine candidate images. To pass the challenge,
a user is requested to select all images that are similar
to the sample image. ReCaptcha 2015 was released by
Google in 2015.

ReCaptcha 2018. Figure 2b shows an example of
ReCaptcha 2018. This challenge consists of one hint
and 16 candidate images. To pass this challenge, a user
is asked to select all images that are relevant to the hint.
ReCaptcha 2018 is the currently the newest version of
ReCaptcha.

Facebook. Figure 2c shows an example of a captcha
used by facebook.com. This challenge contains one hint
and 12 candidate images. To pass this challenge, a user
is required to select all images that are relevant to the
hint.

China Railway. Figure 2d shows an example of a
China Railway captcha. It contains one hint of distorted
characters and eight candidate images. To pass this
challenge, a user is required to select all images that are
relevant to the hint. The China Railway scheme is used
by China’s largest railway ticketing system, 12306.cn.

3.2 Slide-based image captchas

For slide-based image captchas, we collect three

popular real-world schemes, namely GEE SlidePuzzle,

w46 L1

.... W..ﬁ

ﬁéﬁmﬁ]

EN cao e

(a) ReCaptcha 2015 (b) ReCaptcha 2018 (c) Facebook

2 s FERRAR LR
Please select all the images of pencil-boxes

lo

r !

S 7,«¢
aild -

(d) China Railway

Fig. 2 Examples of selection-based image captchas.
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Tencent SlidePuzzle, and Netease SlidePuzzle.

Figure 3 shows examples of GEE SlidePuzzle,
Tencent SlidePuzzle, and Netease SlidePuzzle. Each
of these challenges contains one puzzle and one
background image. To solve those challenges, a user
is requested to slide the puzzle to the correct part of
the background image. The captcha providers check
whether the puzzle window is accurately placed or not,
and make a risk analysis on the slide trajectory. A user is
considered to pass the challenge if and only if the puzzle
window is correctly placed and the slide trajectory is not
suspicious. As shown in Table 2, all of these schemes
are provided by top captcha services, and widely used
by the most popular sites.

3.3 Click-based image captchas

For click-based image captchas, we collect three
popular real word schemes, namely GEE TouClick,
Tencent TouClick, and Netease TouClick.

GEE TouClick. Figure 4a shows an example of GEE
TouClick. This challenge contains one hint of distorted
characters, and one background image also made up of
distorted characters. To solve this challenge, a user is
asked to sequentially click the characters drawn in the
background image according to the hint and in the right
order. Note that there are the same number of distorted
characters in the hint and in the background image.

Tencent TouClick. Figure 4b shows an example

of Tencent TouClick. The structure and workflow of
Tencent TouClick are similar to those of GEE TouClick,
except that in this case that there are more distorted
characters in the background image than there are in the
hint.

Netease TouClick. Figure 4c shows an example
of Netease Touclick. This challenge consists of one
hint made up of machine-encoded characters, and one
background image made up of distorted characters. To
pass this challenge, a user is asked to sequentially click
the distorted characters in the correct order.

As shown in Table 2, GEE TouClick, Tencent
TouClick, and Netease TouClick are all supplied by
proficient captcha service providers and widely used by
many major sites.

4 Security of Selection-Based Captchas

In this section, we first design SelAftack, an
attack framework SelAttack targeting selection-based
captchas. We then evaluate SelAttack against four
popular real-world captcha schemes: ReCaptcha 2015,
ReCaptcha 2018, Facebook, and China Railway.
Finally, we discuss some design flaws in the tested
schemes.

4.1 SelAttack

Selection-based captchas require a user to correctly
select images with specific semantic meanings. Hence,

HEal T 7SR RS E

Please slide the puzzle window to

P TOTR=SI0N S

(a) GEE SlidePuzzle

(b) Tencent SlidePuzzle

Please slide the puzzle window to the right region

- ARENRRIATEH E

(c) Netease SlidePuzzle

Fig. 3 Examples of slide-based image captchas.

“FE”, “#4”, “i#” with the right order

(a) GEE TouClick

(b) Tencent TouClick

Please sequentially click “

EORSE "B

" with right order

(¢) Netease TouClick

Fig. 4 Examples of click-based image captchas.
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it is intuitive that an image classification model can
be utilized to understand the semantic meanings of
candidate images and determine the correct ones.

Below, we first give several notations, and then show
the detailed steps of our attack.

4.1.1 Notations

A selection-based captcha contains two parts: a hint
consisting of a short phrase (e.g., “car’” or “street signs”)
and several candidate images. There are usually two
types of hints: a fext hint, which is presented in the
format of machine-encoded text, and an image hint,
which is presented as an image of distorted characters.

4.1.2 Design of SelAttack

Based on the workflow of selection-based captchas, we
design our attack, as illustrated in Algorithm 1. The
attack proceeds as follows: (1) To bootstrap our attack,
we pre-train an image classification model. We also
pre-train a character recognition model if the target
scheme contains an image hint. (2) Upon receiving
a challenge, we first extract the candidate images and
the hint directly from the HTML DOM elements of the
received captcha. If it is an image hint, we then perform
image recognition on the hint. Note that this process
is designed to transform the distorted characters in the
image hint into machine-encoded text. (3) Next, we
utilize the classification model to recognize candidate
images and predict their semantic labels. (4) Finally,

Algorithm 1 SelAttack
Input: Image captcha /.
Output: The captcha solution S.
1 h < extract_hint(/)
2 if & is an image then h = recognize_hint_image(/1)
3 C <« extract_candidate_images(/)
4 L < recognize_candidate_images(C)
5 § < select_candidate_images(C, L, h)
6 return S
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we select as the solution of the given captcha those
images found to be relevant to the hint. The entire attack
pipeline is illustrated in Fig. 5.

4.2 Evaluation of SelAttack

To evaluate the effectiveness, efficiency, generality,
and the cost-effectiveness of SelAttack, we conduct a
set of experiments on four different captcha schemes:
ReCaptcha 2015, ReCaptcha 2018, Facebook, and
China Railway. Based on our evaluation, we identify
several design flaws in the currently popular selection-
based captchas.

Setup. First, we conduct a preliminary empirical
analysis on the four tested schemes, especially
looking at the hint capacity (i.e., the number of
unique hints). Based on the preliminary analysis, we
collect five datasets with sufficient labeled images for
bootstrapping our attack. To be specific, these datasets
are used for training five image classification models,
namely CNN;, CNN,, CNNj3, CNN4, and CNNs.
Equipped with these models, we run SelAttack against
the four tested schemes.

Then, we leverage four online image recognition
services — AliAPI, GoogleAPI, MicrosoftAPI, and
TencentAPI —to attack the considered captchas, and
compare the results with our own attack.

As a comparison with prior methods, we test two
state-of-the-art attacks: Ya et al.[®! and Sivakorn et al.[%’,
which claim to be cost-effective and widely applicable.
While those attacks have previously been evaluated
against only two schemes, we fine-tune them and apply
them on all four of the tested schemes.

To compare our attack method with human labor,
we evaluate the effectiveness and efficiency of seven
popular human captcha-solving services, i.e., ruokuai,
yundama, 2captcha, hyocr, AntiCaptcha, DeCaptcha,
and imagetype. We select these seven services on the
basis that they support selection-based captchas.

Selection-based Extract and
image captchas recognize the hint

Pipeline

Classify candidate Select similar Final answer
images images

- troct
grass-

(< TH6]

Fig. 5 Attack pipeline for selection-based image captchas.
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4.2.1 Preliminary analysis

Before performing the attack, we make a preliminary
analysis of the four tested schemes, especially looking
at their hint capacities. This analysis serves as a
guidance for training our attack models.

We focus on two primary questions when analyzing
the captcha schemes: how many hints are there, and
what is the content of the hints. To answer these
questions, we employ a methodology that combines
the continuous observation of live online captchas
with the statistical analysis of historical datasets of
pre-downloaded captchas. Below, we list the results
of our preliminary analysis of the four schemes (as
summarized in Table 3).

ReCaptcha 2015. ReCaptcha 2015 has 22 frequent
used hints, including “banana”, “beer”, and “bread”.
We obtain this result from a statistical analysis of about
700 pre-downloaded captchas, because ReCaptcha
2015 is temporarily unavailable and therefore only the
historical dataset is accessible.

ReCaptcha 2018. ReCaptcha 2018 has seven
frequent hints, including “house”, “cat”, and “chair”.
We obtain this result through a continuous one-month
observation of real captchas from 2018-02-10 to 2018-
03-13.

Facebook. Facebook has 12 distinct hints, including
“bicycle”, “cat”, and “chair”. As for ReCaptcha 2015,
we obtain this result from a statistical analysis on about
200 pre-down loaded captchas.

China Railway. China Railway has 80 distinct
hints, including “Chinese knot”, ‘“dashboard”, and
“refrigerator”’, which is the largest of hints used by any
of the tested schemes. We obtain this result through a
three-month observation on real captchas on 12306.cn

from 2017-08-15 to 2017-10-20.

We conjecture that the reasons for the tested schemes
having only a limited number of hints are as follows. (1)
Implementing a selection-based captcha with a small
size of hints is simple and convenient. (2) Collecting
and labeling images from a wide range of categories
is time consuming and expensive, even though it is
theoretically more secure.

4.2.2 Data collection

According to the guidance given by the preliminary
analysis, we collect labeled datasets for training image
classification models. We employ a methodology that
combines automated crawling, synthetic generation,
and collection of benchmark datasets. In summary, we
collect five labeled datasets: Dy, Dy, D3, D4, and D5
(as illustrated in Table 4). Below, we briefly describe
these five datasets.

(1) D;.Tobreak ReCaptcha 2015, we collect images
in 22 categories from the image searching results of
google.com and baidu.com. Additionally, we employ
labeled images from the ImageNet!*”! benchmark,
which is a large visual database designed for visual
object recognition research that contains over 14 million
of hand-annotated images. These are combined into a
dataset, denoted by D;, consisting of 33000 images
with 1500 per category.

(2) D,. To break ReCaptcha 2018, we collect
labeled images in 10 categories from the image
searching results of google.com and baidu.com, and
from ImageNet. This dataset, denoted by D,, contains
15000 images with 1500 per category.

(3) D3. To break Facebook, we collect labeled
images of 12 categories from the image searching
results of google.com and baidu.com, and ImageNet.

Table 3 Statistics of the four schemes.

Scheme Number of categories Category
ReCaptcha 2015 22 artichoke, avocado, banana, beer, bread, cabbage, cake, cat, coffee, dog, guinea pig,
hamburger, ice cream, pasta, pizza, rice dish, rose, sandwich, soup, steak, sushi, wine
ReCaptcha 2018 7 house, road, sky, street sign, telephone pole, tree, vehicle
Facebook 12 bicycle, cat, chair, cloud, dog, fireworks, flower, guitar, lion, tiger, waterfall, wristwatch
Chinese knot, dashboard, bus card, refrigerator, band Aid, embroidery, paper cut, seal, tape
measure, double-sided adhesive, whistle, beer, helmet, corkscrew, palm print, typewriter,
cuff, mop, wall clock, ventilator, pencil case, calendar, notebook, portfolio, cotton swab,
cherry, woolen, sandbags, salad, poster, seaweed, seagull, funnel, candlestick, hot-water
China Railway 80 bottle, archway, lion, coral, electronic scales, wire , rice cooker, plate, basketball, jujube,

red bean, red wine, mung bean, tennis racket, tiger, earplug, aircraft carrier, fly swatter, tea
table, tea cup, pill, pineapple, steamer, french fries, ant, bee, candle, lizard, stapler, plum,
palette treadmill, street light, chili sauce, pyramid, clock, bell, spatula, gong, pennant, rain
boots, firecrackers, campanula, pressure cooker, blackboard, dragon boat
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Table 4 Labeled datasets.

Number of Number of images Number of
Dataset . . . Source Usage
image categories per category images

D, 22 1500 33000 ImageNet, baidu.com, google.com ReCaptcha 2015

D> 10 1500 15000 ImageNet, baidu.com, google.com ReCaptcha 2018

Dj 12 1500 18 000 ImageNet, baidu.com, google.com Facebook

Dy 80 1500 120000 ImageNet, baidu.com, google.com China Railway

Ds 80 about 750 60 000 12306.cn China Railway

De 3755 about 1400 5257000 Synthetic character generator GEE, Tencent,
(github.com/AstarLight) Netease TouClick

D~ - - 2000 geetest.com Gee TouClick

Dg - - 2000 open.captcha.qq.com Tencent TouClick

This dataset, denoted by D3, contains 18 000 images
with 1500 per category.

(4) Dy and Ds. To break China Railway, we
collect labeled images in 80 categories from the
searching results of google.com and baidu.com, and
from ImageNet. This dataset, denoted as D4, consists
of 120 000 images with 1500 per category. In addition,
we collect captcha challenges from 12306.com, and
manually label the distorted image hints. These are
combined into a dataset, denoted as Ds, consisting of
60000 images of distorted hints with about 750 per
category.

4.2.3 Attack models

We train CNN; for breaking ReCaptcha 2015, train
CNN, for breaking ReCaptcha 2016, train CNNj3 for
breaking Facebook, and train CNN4 and CNNs for
breaking China Railway. All of the five classification
models are trained on an ubuntu server equipped with
an Intel i5-7500 CPU, a GTX 1060 GPU, and 16 GB
memory. The models are trained through the standard
five-fold cross validation; that is, four-fifths of the data
is used for training the CNN model and the remaining
one-fifth for evaluating the accuracy of the trained
model. There is no overlap between the training and
validation datasets. Below, we detail the use of, training

processes for, and results of these five models (as
summarized in Table 5).

(1) CNNj;. CNN;j is used to predict the label for each
candidate image from ReCaptcha 2015 challenges. We
train CNN; on D with a batch size of 16 and a learning
rate of 1x 1074, This training process lasts for 18 hours,
and finally achieves a high image-recognition accuracy
of 0.9597 in recognizing images. This training result
also shows that our pre-trained image classifier, CNNy,
has good potential for annotating candidate images for
ReCaptcha 2015.

(2) CNN,. CNN; is used to label each candidate
image for ReCaptcha 2018 challenges. Since the image
categories of ReCaptcha 2018 are different from those
of ReCaptcha 2015, it is necessary to train another well-
designed classifier. We train CNN, on D, with a batch
size of 16 and a learning rate of 1 x 10™#. The training
process of CNN,, lasts for 8 hours, and finally achieves
an image-recognition accuracy of 0.9177.

(3) CNN3. CNNj3 is used for labeling candidate
images from Facebook challenges. As with CNN; and
CNN,, we train CNN3 on D3 with a batch size of 16
and a learning rate of 1 x 10, The training process of
CNN; lasts for 9 hours, and finally achieves an image-
recognition accuracy of 0.9727.

Table 5 Summary of pre-trained deep models.

Model name Model type Accuracy Training time (h) Usage
CNN; CNN 0.9597 18 Recognize images for ReCaptcha 2015
CNN» CNN 0.9177 Recognize images for ReCaptcha 2018
CNN3 CNN 0.9727 9 Recognize images for Facebook
CNN4 CNN 0.9327 93 Recognize phrases for China Railway
CNNs CNN 0.9661 25 Recognize images for China Railway
CNNg CNN 0.9986 17 Recognize distorted characters

Fast-RCNN; R-CNN 0.9201 7 Localize objects for GEE TouClick

Fast-RCNN» R-CNN 0.9712 12 Localize objects for Tencent TouClick
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(4) CNN4 and CNNs. Both CNN4 and CNNj3 are
used for breaking the China Railway captcha scheme.
Specifically, CNN4 is used for labeling candidate
images, and CNN; is used for recognizing hints made
up of distorted Chinese phrases. We train CNN4 on Dy,
and train CNN5s on Ds. The training process of CNNy
lasts for 93 hours, and finally achieves a high image-
recognition precision of 0.9327. The training process
of CNN; lasts for 25 hours, and finally achieves a high
precision of 0.9661 in recognizing hints made up of
distorted Chinese phrases.

4.2.4 Attack results

Equipped with the five pre-trained models, we now
run SelAttack against captchas from ReCaptcha 2015,
ReCaptcha 2018, Facebook, and China Railway. For
the two temporarily inactive services, ReCaptcha 2015
and Facebook, we perform our attack against 684
and 200 pre-downloaded challenges, respectively. For
the two live captcha services, ReCaptcha 2018 and
China Railway, we perform our proof-of-concept attack
against 200 real online captchas from each, limiting the
number so as to minimize our impact.

To validate our attack results on inactive services, we
manually inspect the captcha challenges and figure out
the correct solutions. Table 6 shows the success rate and
speed of our attack on the four schemes. The success
rate here is the fraction of attempts at breaking the
selection-based captcha challenges among a number of
attempts that are successful.

Success rate. Our attack’s success rate ranges from
0.79 to 0.90, which is relatively high. Taking China
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Railway as an example, it is reported that only 2%, 27%,
and 65% of human users successfully pass the captcha
on their first, second, and third attempts, respectively
(baike.baidu.com/item/12306). Our attack achieves its
highest success rate of 0.90 on China Railway. The
lowest success rate of 0.79 is achieved on ReCaptcha
2018, which is still very high when benchmarked
against the minimum successful breaking rate for
automated attacks of 1% suggested by Ref. [8]. The
greater difficulty involved in breaking ReCaptcha 2018
might be explained as follows: (1) ReCaptcha 2018
has a larger number of candidate images, which might
introduce more classification errors; and (2) ReCaptcha
2018 has several confusing image categories, e.g.,
bridges and roads, which are difficult even for human
users to recognize.

Speed. On average, our attack takes between one
and five seconds to break each of the tested schemes,
which is relatively fast. We note that the time to solve
ReCaptcha 2018 and China Railway includes a network
delay overhead estimated at three seconds per captcha.
If we exclude the network overhead, the fastest speed
is achieved on China Railway, while the slowest speed,
about 2 seconds, is achieved on ReCaptcha 2018.

We find that the solving time excluding network
overhead scales linearly as the candidate image size
increases. Figure 6 illustrates this linear growth
characteristic, which suggests that our attack is scalable
in practice, and that a parallel implementation of
SelAttack could therefore be applied to solve large
numbers of image captchas.

Table 6 Attack results on selection-based image captchas. “~’ stands for not given.

Method ReCaptcha 2015 ReCaptcha 2018 Facebook China Railway
Success rate  Speed (s) Success rate Speed (s) Successrate Speed (s) Success rate Speed (s)
Our method 0.88 1.26 0.79 4.92 0.86 1.41 0.90 4.14
. Ya et al.[] 0.14 0.59 - - 0.09 0.47 0.52 6.62
Prior art .
Sivakorn et al.[! 0.71 20.80 — — 0.83 25.30 0.37 20.60
Image TencentAPI 0.19 13.64 0.06 20.19 0.25 15.32 0.03 14.97
~. GoogleAPI 0.62 16.13 0.49 23.31 0.73 19.53 0.07 17.82
recognition -
. ALIAPI 0.37 14.27 0.11 18.40 0.35 13.04 0.16 12.65
SEVIC® MirosoftAPI 0.21 19.95 0.08 25.42 0.44 21.09 0.02 17.01
ruokuai 0.81 4.54 0.91 6.97 0.88 4.21 0.86 5.57
yundama 0.89 4.36 - - 0.77 5.18 0.88 5.29
Captcha- hyocr - - 0.85 7.05 - - - -
solving 2captcha 0.86 8.35 0.88 4.27 0.90 7.98 0.79 11.37
service AntiCaptcha 0.84 6.43 0.92 5.69 0.93 8.71 0.65 9.94
DeCaptcha 0.41 23.16 0.62 31.12 0.46 25.24 — -
imagetyperz - - 0.95 41.68 - - - -

Note: Speed is defined as the time of solving a captcha challenge.
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Fig. 6 Captcha-solving time with various number of
candidate images.

In summary, the high success rate and short solving
time indicate that SelAttack poses a realistic threat to
selection-based captcha schemes.

4.2.5 Comparison with image recognition services

Alongside the pre-trained attack models, we also
solve captchas by calling third-party online image
classification APIs to solve captchas. We evaluate
attacks against selection-based captchas leveraging API
calls from four popular services, namely GoogleAPI,
TencentAPI, MicrosoftAPI, and ALIAPIL.

For each recognition service, we request API
calls for 400 challenges with 100 per captcha
scheme, constituting a total of 17600 calls for image
recognition. Table 6 shows the success rate and speed
of the attacks leveraging the four image recognition
services.

When compared with SelAttack, the success rate
of the recognition service based attacks is relatively
low, ranging from 0.02 to 0.73. Among all the tested
services, GoogleAPI achieves the best performance,
with a success rate larger than 0.49 on a majority of
schemes. For the remaining recognition services, the
highest success rate is 0.44.

In summary, from the above analysis, we conclude
that (1) our attack models are well-designed and
effectively trained, proving to be very powerful for
breaking selection-based captchas; and (2) some online
services (e.g., GoogleAPI) can provide a compromise
option when time is short or the computing environment
is limited.

4.2.6 Comparison with previous methods

Recently, Sivakorn et al.’! designed a novel attack
that leverages deep learning techniques for image
annotation to break selection-based image captchas. Ya
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et al.[%! also developed a novel learning approach for
constructing a large association graph, which was then
applied to breaking selection-based captcha schemes.
Therefore, we compare our attack results on ReCaptcha
2015, Facebook, and China Railway with these two
alternative methods, which are both considered cost-
effective. For the experimental comparison, all the
parameters in the previous methods are properly
selected and each of the tested methods uses the same
training dataset.

ReCaptcha 2018 is different from the other tested
schemes in that its candidate images are derived from
the same source image (in other words, the candidate
images form a single background image and are
correlative with each other). We do not evaluate the two
previous methods on ReCaptcha 2018 since this feature
makes it impossible for Ya et al.[%! to find a prominent
co-occurrence relationship between candidate image
pairs and difficult for Sivakorn et al.l’! to train a (label,
hint) similarity classifier, as each label of the correlative
candidate image is similar to the hint.

Table 6 shows the success rates and speeds of the two
previous methods. Note that since Sivakorn et al.! also
evaluated their method on the same pre-downloaded
captchas of ReCaptcha 2015 and Facebook as we used
in our test, we simply report their results in Table 6.

From the comparison with previous methods, we can
see that (1) our attack achieves the highest success
rate and operates at a comparatively high speed on
all schemes; (2) although Ref. [5] achieves a tolerable
success rate, it has the highest time consumption among
the tested methods, which might raise timeout errors in
practical attack scenarios; and (3) the success rates of
Ref. [6] are relatively low as compared to those of our
attack. Our proposed SleAttack is more successful than
both Sivakorn et al.’! and Ya et al.l% since (1) Sivakorn
et al.®! utilized online services (e.g., Google’s reverse
image search service and the Clarifai service) for the
semantic annotation of images, which is a low accuracy
method, and (2) Ya et al.!'y mainly leveraged the co-
occurrence relationships between candidate image pairs
to solve selection-based image captchas, which might
not work in case where those relationships are weak.

Overall, the results suggest our attack is superior in
terms of both success rate and speed when compared
with existing attacks.

4.2.7 Comparison with human labor

Finally, we compare our attack results with human labor
from seven proficient captcha-solving services, namely
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ruokuai, yundama, hyocr (from China), AntiCaptcha,
DeCaptcha, imagetyperz (from the USA), and 2captcha
(from Russa)®.

Due to budget limits, for each captcha-solving
service, we submit 400 challenges with 100 per captcha
scheme. Table 6 summarizes the success rates and
speeds of the seven captcha-solving services. Note
that we do not report the result of yundama, hyorc,
DeCaptcha, and imagetyperz on some schemes that they
do not support.

The success rate of human labor on all schemes
ranges from 0.41 to 0.93, and the solving time ranges
from 4.54 to 41.68 seconds. The poorest captcha-
solving service is DeCaptcha, which simultaneously
has the lowest success rate and the slowest speed.
Compounding this, we receive a large percentage
of timeout errors (i.e., cases where a solution is
not provided within the allowed time window) from
DeCaptcha. We conjecture that a lack of sufficient
online human labor gives DeCaptcha its poor user
experience.

We then compare our attack results with those of
human labor. Surprisingly, on China Railway we find
that our attack has an even higher success rate than
that of the most proficient human labor. As for other
schemes, the gap between our attack and proficient
human labor is negligible. In terms of speed, our attack
is naturally much faster than human labor.

The above analysis suggests that our attack is
comparable to captcha-solving services in attack
accuracy and more efficient in attack duration.

4.3 Design flaws

Based on the evaluation results, we summarize the
following design flaws in real-world selection-based
captchas. First, all of the tested schemes have a
limited number of hints, meaning that an adversary can
easily enumerate all of the hints and train an accurate
image classification model. Second, most of the tested
schemes feature a text hint, which can be extracted
with little effort. Third, the candidate images have
little resilience from the security perspective (usually
there is no noise); therefore, a well-trained model can
accurately uncover their semantic meanings.

5 Security of Slide-Based Image Captchas

In this section, we detail the design of SliAftack, which
targets slide-based captchas. We then evaluate

@ The locations of captcha-solving services are determined based on their
IP addresses.

SliAttack against three popular real-world captchas:
GEE SlidePuzzle, Tencent SlidePuzzle, and Netease
SlidePuzzle. Based on our evaluation, we also disclose
several design flaws in currently popular slide-base
image captchas.

5.1 SliAttack

Slide-based captchas ask a user to slide a puzzle to the
correct part of an image. For convenience, we name this
correct part the puzzle region. The key to automatically
breaking this captcha is to accurately find the puzzle
region, and to mimic human behavior when sliding the
puzzle window. Before introducing our attack design,
we first describe how to find the puzzle region and
mimic human behavior.

5.1.1 Puzzle region detection

Through an analysis of 2000 slide-based captchas,
we observe that a single source image is repeatedly
used to generate a great many captcha challenges in
real captcha systems, such as Tencent SlidePuzzle and
Netease SlidePuzzle. This is shown in Fig. 7, in which
Fig. 7ais an example of the source image, and Figs. 7b—
7d are three different challenges generated from that
same image. Based on this observation, it is intuitive
that a source image can be recovered by analyzing a
set of captchas that it generates, and the comparison
between a captcha and its source image can be used to
accurately locate the puzzle region. Note that we do
not utilize advanced object detection models here, since
they can only approximately locate a puzzle region,
which significantly decreases the attack’s success rate.
Hence, we detect the puzzle region in two steps: (1)
source image recovery and (2) comparison-based region
detection.

Source image recovery. Let s denote a source
image, and I* = {[f|i = 1,2,...,m} be the set of
background images generated from s. We further define

(c) Generated captcha

(d) Generated captcha

Fig.7 3 captchas and their corresponding source image.
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IF ={15(j)lj = 1.2,....n}, where I} (j) is the j-th
pixel of 17, m,n € R.

We now briefly introduce our source image recovery
algorithm, as illustrated in Algorithm 2. It involves: (1)
Single pixel reconstruction (lines 4-6): we construct the
Jj -th pixel of s by selecting the most frequent value from
the pixel set, denoted by p, consisting of all the j-th
pixels of /9. (2) Image reconstruction (lines 2-7): we
recover s by the continuous construction process of all
pixels.

Comparison-based region detection. The puzzle
region can be detected through a comparison between
the background image and its corresponding source
image; i.e., a simple XOR operation can be used to
detect the region. Figure 8 illustrates the process of
puzzle region detection using an XOR operation on the
background image and its source image.

5.1.2 Human behavior simulation

Some slide-based schemes detect malicious behaviors
(e.g., arapid and direct movement to the puzzle region)
that they consider to be machine generated. To bypass
such detection in SliAttack, we mimic human behaviors
leveraging four simulation functions: Sigmoid (en.
wikipedia.org/wiki/Sigmoid_function), Softmax (en.
wikipedia.org/wiki/Softmax_function), =~ ReLu (en.
wikipedia.org/wiki/Rectifier_(neural_networks),  and
Tanh (brenocon.com/blog/2013/10/tanh-is-a-rescaled-
logistic-sigmoid-function).

Let b denote the distance between the puzzle window
and region. Let D = {D;li =1,2,...,k}, where
> p,ep Di = b denote the length set of moving steps,

Algorithm 2 Source image recovery

Input: /¢
Output: s
1 Initialize s < @
2 for j € {1,2,...,n}do
3 p< 9
4 fori € {1,2,...,m} do
s | p < pUIF()
6 candidate < the most frequent value in p
7 § < sUcandidate

(a) Source image

(b) Backgournd image (c) Detected region

Fig. 8 The process of puzzle region detection.
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and T = {T;|i =1,2,...,k} denote the time set of
moving steps.

To bypass the malice detection, we generate D
and T as follows. Consider the Sigmoid function,

1
f(x) = oo as an example. We assign the
1

length of each step as D; = bx (m—
1

| + e—G—D/2+4
k. Note that, to meet the constraint that 3, ., D; =

), where i is an integer and 1 < i <

b, we set D; = b x and Dy = b x

1 4 e—1/2+4

1
(1 - m). We randomly shuffle D to get the

final sequence of moving steps. For 7', we randomly
generate the moving time between each moving step.

The working mechanisms of the other three
functions, Softmax, ReLLu, and Tanh, are similar to that
of Sigmoid.

5.1.3 Design of SliAttack

Based on the workflow of slide-based captchas, we
design our attack, as illustrated in Algorithm 3. We
collect a set of captcha challenges from the target
scheme and use Algorithm 2 to recover the set of
source images. This process is mainly used to bootstrap
our attack. Afterwards, we can automatically solve
each real-world captcha from the target scheme. When
receiving a captcha challenge, we first extract the
background image, and find its corresponding source
image. Then, we locate the puzzle region through a
comparison between the background image and the
source image. Next, we mimic human behaviors in
sliding the puzzle to the detected puzzle region. The
pipeline of our attack is shown in Fig. 9.

5.2 Evaluation of SliAttack

To evaluate SliAttack’s effectiveness against slide-
based captchas, we conduct a series of experiments on

Algorithm 3  SliAttack
Input: The slide-based captcha / and the set of collected
historical captcha images 7
Output: The captcha solution S.
1 B <« source_image_recovery(/*)
2 b < extract_background_image(/)
3 s < find_source_image(b, s)
4 r < localize_puzzle_region(b, s)
5 S < mimic_human_behavior(r, b)
6 return S
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Fig. 9 Attack pipeline for slide-based image captchas.

three different schemes, including GEE SlidePuzzle,
Tencent SlidePuzzle, and Netease SlidePuzzle.

Setup. To bootstrap the attacks against Tencent
SlidePuzzle and Netease SlidePuzzle, we prepare a
source image datasets for each. For GEE SlidePuzzle,
no bootstrapping is required since its source images can
be directly obtained from the received challenges.

We then evaluate SliAttack using six different
movements for the slide: direct, random, Sigmoid,
Softmax, Tanh, and ReLu. Note that we evaluate
the direct and random movements only to determine
whether the target scheme employs any malice
detection strategy.

Further, we compare our attack with human labor. We
hire human labor from three captcha-solving services,
i.e., ruokuai, hyocr, and dama2. We select these services
based on their popularity and their support for slide-
based captchas.

5.2.1 Attack results

We perform our attack against slide-based image
captchas as follows. First, if possible, we recover source
images for the tested schemes to bootstrap our attack.
Of the three tested schemes, only Tencent SlidePuzzle
and Netease SlidePuzzle require the process of source
image recovery. Specifically, we recover 10 source
images from 2000 pre-downloaded challenges for
Tencent SlidePuzzle, and 11 source images from 2000

pre-downloaded challenges for Netease SlidePuzzle.
We then run our attack using each of the six movement
settings against all of the schemes. To minimize our
impact on real systems, we limit our attack to 200 live
online challenges per scheme.

Table 7 summarizes our attack’s success rate (the
fraction of attempts at breaking the slide-based captcha
challenges that are successful) and its average speed
on each scheme. In the remainder of this section, we
discuss the effectiveness of our behavior simulator and
the success rate and speed of our attack method.

Effectiveness of the behavior simulator. We can
observe from Table 7 that our attack with movement
based on the Sigmoid function has the highest success
rate on all schemes. This result suggests that SliAttack’s
behavior simulator is effective in practice.

GEE SlidePuzzle is the most robust of the three tested
schemes. On GEE SlidePuzzle, our attack achieves the
highest success rate of 0.96 when using the Sigmoid
function, while the success rate decreases significantly
when we use other functions.

We find that Tencent SlidePuzzle probably lacks any
mechanism for malice detection. Our attack has a 100%
success rate even when we directly move the slide
puzzle to the puzzle region. We conjecture that this is a
design flaw in Tencent SlidePuzzle, and this conjecture
is confirmed by Tencent after we report to it with our

Table 7 Attack results on slide-based image captchas.

Method GEE SlidePuzzle Tencent SlidePuzzle Netease SlidePuzzle
Success rate  Speed (s) Success rate  Speed (s) Success rate  Speed (s)
Sigmod 0.96 5.30 1.00 4.01 0.98 1.98
Softmax 0.59 5.27 0.95 4.18 0.72 2.15
Tanh 0.00 5.16 1.00 4.06 0.98 2.24
Our method ReLu 0.54 5.68 0.99 4.27 0.54 5.68
Random 0.16 5.33 0.97 4.33 0.81 2.35
Direct moving 0.00 2.37 1.00 0.88 0.00 1.71
ruokuai 0.88 8.82 0.96 7.94 0.91 6.06
Captcha-solving services hyocr 0.93 9.69 0.92 5.73 0.87 7.71

dama2 0.91 11.03 0.97 6.13 0.95 8.17
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findings.

Success rate. Our attack’s success rates are all above
0.96, and the highest success rate reaches 1. Such a high
success rate not only indicates the effectiveness of our
attack, but also reveals the vulnerabilities of real-world
slide-based captcha schemes.

Speed. On average, it takes between 1 and 6 seconds
for our attack to break each of the schemes. The fastest
speed is achieved against Tencent SlidePuzzle, which
takes about 1 second to break. The slowest speed is
on GEE SlidePuzzle, which takes nearly 5 seconds —
still very fast as compared to the time taken by human
users (about 30 seconds). Tencent SlidePuzzle takes
significantly less time to break than the other schemes
because it does not inspect the slide trajectory, therefore
our attack can directly slide the puzzle window to
the puzzle region. For GEE SlidePuzzle and Netease
SlidePuzzle, our attack randomly stops and waits for 1 —
2 seconds in order to evade the malice detection.

5.2.2 Comparison with human labors

Next, we evaluate the attack results of human labor
from ruokuai, yundama, and dama2, the three largest
captcha-solving services in China. Due to budget limits,
for each service, we submit 300 challenges with 100
per scheme. Table 7 shows the success rate and average
speed of proficient human labor.

After comparing our attack with human labor, we
come up with the following two findings: (1) proficient
human labor fails on all captcha schemes to achieve
a better success rate than that of our attack; and (2)
proficient human labor requires an average of 7—10
seconds to solve the captchas, which is much slower
than our attack. We conjecture that the reason why
human labor is less effective is that the measurement
errors produced by human labor can significantly affect
the positioning accuracy of the puzzle region, leading to
an incorrect solution.

Again, from the comparison with human labor, we
conclude that SliAttack is highly effective and that
the currently common practice of slide-based captchas
however is inadequate.
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5.3 Design flaws

Based on our evaluation results, we summarize the
following design flaws in slide-based captchas. First,
most schemes repeatedly use the same source images
to generate challenges, which makes it easy for
an adversary to locate puzzle regions. Second, the
malice detection methods used by the tested real-
world schemes are not an effective defense against
adversaries, and one such scheme does not even employ
a detection algorithm.

6 Security of Click-Based Image Captchas

In this section, we introduce the design of the CliAttack
method for attacking click-based captchas. We then
evaluate CliAttack against three popular real-world
captchas. Based on our evaluations, we discuss several
design flaws in existing click-based captchas.

6.1 CliAttack

Click-based captchas ask a user to sequentially click
the distorted characters drawn in the background image
matching their appearance in the hint. Intuitively,
advanced deep learning techniques can be adopted to
detect the semantic regions of distorted characters.
6.1.1 Notations

A click-based captcha consists of two parts: an image
hint and a background image. Similar to selection-based
captchas, the hint can come in two formats: as a text
hint and as an image hint. The characters contained in
the hint are also drawn on the background image.

6.1.2 Design of CliAttack

The design principle of CliAttack is shown in Fig. 10,
while Algorithm 4 gives the pseudo code. There are four
steps to the CliAttack procedure. (1) To bootstrap our
attack, we pre-train a character recognition model for
recognizing distorted characters from both the hint and
the background image. We also pre-train a character
detection model on a dataset of captcha challenges
with annotated semantic regions, which is collected
from the target captcha scheme. (2) Upon receiving a
challenge, we extract the hint from the HTML DOM

Extract character
regions

Recognize
characters

Sequentially click Final answer
characters

. . Click-based Extract and
Plpellne ccaplcivsae recoghize the hint]
Example ’ @‘i‘ 8

08

Sequentially click

Fig. 10 Attack pipeline for click-based image captchas.
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Algorithm 4  CliAttack
Input: The click-based captcha /.
Output: The captcha solution S.

1 h < extract_hint(/)

2 if h is an image then h = recognize_hint_image(/)
b < extract_background_image(/)

3 R < localize_semantic_regions(b)

4 L <« recognize_semantic_regions(R)

5 § < find_right_regions(., R, L)

6 return S

elements and, if necessary, use the character recognition
model to recognize the hint’s distorted characters. (3)
We then locate potential semantic regions leveraging
the pre-trained character detection model. The semantic
meanings of those regions are also recognized by
the character recognition model as well. (4) After
comparing the potential semantic regions with the hint,
we sequentially click the correct semantic regions,
which are made up of distorted characters drawn on
background images.

6.2 Evaluation of CliAttack

To evaluate CliAttack, we run a set of experiments
against three real-world schemes: GEE TouClick,
Tencent TouClick, and Netease TouClick.

Setup. To bootstrap the attack, we collect and
manually label three datasets, and use these labeled
datasets to train three models to detect and recognize
distorted characters. Equipped with the pre-trained
models, we then run our attack against live online
captchas.

For a comparison with online recognition services,
we run five Optical Character Recognition (OCR)
services, including  BaiduOCR, TencentOCR,
GoogleOCR, AIlIOCR, and Face++OCR. We select
these five OCR services since they are reported to
rapidly and accurately recognize distorted characters
drawn on images.

For a comparison with human labor, we evaluate
the attack results of three captcha-solving services:
ruokuai, yundama, and dama2. We choose these three
captcha-solving services due to their popularity in the
underground captcha-solving market and their support
for click-based captchas.

6.2.1 Data collection
For breaking GEE TouClick, Tencent TouClick, and

Netease TouClick, we collect a total of three labeled
datasets: D¢, D7, and Dg as illustrated in Table 4.

These datasets are then used to train object detection
and character recognition models. Below, we detail the
basic statistics of these datasets.

e Dg¢. D¢ is a synthetic dataset of distorted
characters, which contains 5257000 images of 3755
commonly used Chinese characters. In Dg, nearly every
1400 distorted images of a single character is generated
by 16 different font generation algorithms. D¢ is mainly
used for training a CNN model to recognize distorted
characters.

e D7. D7 consists of 2000 captcha challenges
collected from GEE TouClick, with the regions of each
distorted character manually annotated. D+ is used to
train a Fast-RCNN model to locate distorted characters
drawn on GEE TouClick challenges.

e Dg. Similar to Dy, Dg contains 2000 captcha
challenges collected from Tencent TouClick, with
the regions of each distorted character manually
annotated. Dg is used to train a Fast-RCNN model to
locate distorted characters drawn on Tencent TouClick
challenges.

Both Netease TouClick and Netease SlidePuzzle use
the same set of images to generate their challenges,
as we discovered during our attack against slide-
based captchas. Hence, we can directly detect distorted
characters through a comparison between the captcha
challenge and its source image.

6.2.2 Attack models

We train three models for breaking the tested schemes:
CNNg, Fast-RCNN;, and Fast-RCNN,. CNNg is
further used for character recognition on all schemes,
Fast-RCNN; is used for character detection on GEE
TouClick, and Fast-RCNN, is used for character
detection on Tencent TouClick.

CNNg is trained on an ubuntu server with two Inter-
Xeon E5-2640V4 CPUs, a GTX 1080Ti GPU, and 128
GB memory. Fast-RCNN; and Fast-RCNNj, are trained
on an ubuntu server with an Intel 15-7500 CPU, a GTX
1060 GPU, and 16 GB memory. All of the models are
trained using the standard five-fold cross validation.

Below, we detail the training process and results of
the three models.

e CNNg. We train CNNg on D¢ with a batch size of
16 and a learning rate of 1 x 1074, This training process
lasts for 17 hours and achieves an accuracy of 0.9986.

e Fast-RCNN;. We train Fast-RCNN; on D¢ with
a batch size of 16 and a learning rate of 1 x 1074,
This training process lasts for 7 hours and achieves an
accuracy of 0.9201. Note that we validate the running
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results through manually inspecting the regions of
distorted characters.

e Fast-RCNN,. We train Fast-RCNN, on D5 with
a batch size of 16 and a learning rate of 1 x 1074,
This training process lasts for 12 hours and achieves an
accuracy of 0.9712. Note that, similar to Fast-RCNNy,
we validate the running results by manually inspecting
the regions of distorted characters.

6.2.3 Attack results

We evaluate our attack against real-world online
captchas from GEE TouClick, Tencent TouClick, and
Netease TouClick. To minimize our impact on live
systems, we run our attack against 200 real-world
challenges from each scheme. Table 8 summarizes the
results of our attack, where the success rate is the
fraction of attempts at breaking the captcha challenges
that are successful.

Success rate. Our attack’s success rates are all above
0.46, with the highest success rate of 0.74 achieved on
Tencent TouClick. These results suggest that CliAttack
is effective in practice.

From Table 8, we can also observe that the most
challenging scheme is GEE TouClick, on which our
attack’s success rate is 0.46. We conjecture that the
following two reasons make GEE TouClick very
challenging: (1) the similarity in color of the distorted
characters and background images adds to the difficulty
in locating distorted characters; and (2) the distorted
characters might be generated by a large number of
different font generation algorithms, so given that
our CNNg character recognition model is trained on
distorted characters from a limited number of fonts (16),
it is reasonable that our attack loses some accuracy on
GEE TouClick.

Speed. Our attack’s duration ranges from 4.13 to
4.78 seconds, which is relatively fast given that a
common usability requirement is to demand a user to
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solve a captcha within 30 seconds. We note that the
solving time of all schemes includes a network delay
overhead estimated at 3 seconds per captcha challenge.
The speed of our attack suggests that it poses a realistic
threat to all of these schemes.

6.2.4 Comparison with online image services

There are several online services and libraries that
offer character recognition functionality, and transform
distorted characters into machine-encoded text. Hence,
we also leverage these online services to evaluate the
security of click-based image captchas. Specifically, we
utilize five widely used character recognition services:
BaiduOCR, TencentOCR, GoogleOCR, AliOCR, and
Face++OCR. For each online service, we test 300
challenges with 100 per scheme.

Table 8 summarizes the results of our evaluation of
these services. The success rate ranges from 0.02 to
0.51, which is relatively low when compared to that
of CliAttack. In terms of speed, it takes between 5.70
and 12.15 seconds on average to break each captcha, of
which a majority is made up of the network latency of
the API calls.

The above analysis suggests that online OCR services
are not particularly well suited for breaking click-based
schemes, and a pre-trained character recognition model
is usually more powerful for this task.

6.2.5 Comparison with human labor

Additionally, we compare our attack results with those
of human labor from three captcha-solving services:
ruokuai, hyocr, and dama2. For each captcha-solving
service, we target 300 captchas with 100 per captcha
scheme. Table 8 shows the success rate and speed of
human solvers on the three tested captcha schemes.
The success rate of human labor is above 0.8 on all
schemes, and their solving time ranges from 6.84 to
9.98 seconds. While the success rate of human labor

Table 8 Attack results on click-based image captchas.

Method GEE TouClick Tencent TouClick Netease TouClick
Success rate  Speed (s) Success rate  Speed (s) Success rate  Speed (s)

Our method 0.46 4.63 0.74 4.78 0.69 4.13
BaiduOCR 0.04 6.55 0.36 6.14 0.12 5.70
GoogleOCR 0.05 13.37 0.27 11.22 0.03 12.15

Image recognition services  TencentOCR 0.02 6.09 0.51 6.53 0.07 6.41
AliIOCR 0.03 7.54 0.13 6.60 0.03 7.17

Face++OCR 0.08 7.96 0.30 8.79 0.05 8.38

ruokuai 0.81 9.47 0.91 7.09 0.89 8.04

Captcha-solving services yundama 0.89 8.86 0.86 7.37 0.87 7.28
dama2 0.85 9.98 0.90 6.84 0.94 9.11
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is higher than that of our attack, the use of human labor
is a much slower method. Moreover, the gap between
the success rate of human labor and that of our attack is
acceptable at less than 0.2.

6.3 Design flaws

Based on the evaluation results, we summarize the
design flaws of click-based captchas as follows. The
most serious design flaw is that some captcha providers,
e.g., Netease, use the same image set to generate
challenges for different schemes. An additional flaw
is that the tested schemes do not perform any anti-
recognition operations (e.g., rotation) on the distorted
characters drawn on background images.

7 Captcha-Solving Services: An
Underground Market

During our research, we find a huge profit-seeking
underground market in captcha-solving services. To
dissect this underground market, we analyze some
statistics of captcha-solving services, including the
number of services, their scale, and their lifecycle.
We also investigate the entire underground market
landscape, including the types of captcha-solving
services being supplied and the scale of the demand.
Then, we estimate the income accruing from these
illegal services. Finally, we analyze their potential
impacts on a variety of industries, including e-
commerce, online ticketing services, and online
advertising.

7.1 Statistics of captcha-solving services

7.1.1 Landscape

To find services that support resolving our tested
captcha schemes, we design and implement two
crawlers to collect captcha-solving services through
related keyword queries. One, named BaiduCrawler,
collects possible services from the search results of
baidu.com; the other, called BingCrawler, utilizes
bing.com to find services. Our crawlers work as
follows. The crawlers first use the names of popular
captcha-solving services (e.g., ruokuai, yundama, and
AntiCaptcha) as keywords to query the search engine.
Then, the crawlers extract the related keywords and the
top sites (i.e., sites that are in the first page of the search
results) returned by the search engine. These top sites
are saved for later rule-based filtering, and the related
keywords are used for subsequent queries. Our crawlers
are designed to repeatedly query the search engine in

order to collect a sufficient number of sites providing
the service.

BaiduCrawler starts by querying two keywords,
ruokuai and yundama, and BingCrawler starts with one
keyword, AntiCaptcha. In total, we collect about 1000
candidate sites after filtering out irrelevant contents. We
then manually check these sites, and finally confirm 152
captcha-solving services that are distributed worldwide.

The above data collection strategy might be
incomplete and has some limitations. For example,
the keywords chosen to bootstrap BaiduCrawler and
BingCrawler might be insufficient because many more
seeds could be employed, e.g., hyocr and DeCaptcha.
Also, it would be possible to collect captcha-solving
services from other sources, e.g., the underground
forums and the external links from identified sites.
There is a case for further dedicated research to design
specific detection techniques for collecting captcha-
solving services, which would aid in the comprehensive
exploration and understanding of the underground
market.

In addition to testing the robustness and security of
image captchas, these 152 services can also be used to
measure the captcha-solving market. The 152 identified
captcha-solving services are located all over the world,
as determined by the geolocations. We observe that
most of the services are located in China (58%),
followed by the United States (21%) and Russia (2%).
This distribution is different from that given in the study
of labor distribution presented in Ref. [28]. There are
three possible reasons for this difference. First, we
collect the geolocations of the service sites while Ref.
[28] focuses on the geolocations of human laborers;
it is possible that the geolocation distribution between
captcha-solving services and laborers is different since
captcha-solving services usually make extensive use
of labor from foreign countries with abundant labor
and low labor costs. Second, it has been eight years
since the study in Ref. [28] was conducted, and the
geographical distribution both of the captcha-solving
services and of the human laborers is likely to have
changed in this time. Third, the data collection method
used in this paper might be biased, and to some extent
this could explain the inconsistency of the findings.
However, since our primary focus in this paper is not
to measure the underground market of captcha-solving
services but rather to evaluate the security of real-world
image captchas, the 152 services that we identify are
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sufficient for our analysis.
7.1.2 Estimated number of laborers

Figure 11 illustrates the number of laborers working for
the popular captcha-solving service platforms used in
our work. Of these services, most (70%) have less than
4500 laborers, while the remaining (30%) have about
8000 laborers. We also estimate the average number
of laborers per service at about 3700; this number is
estimated from the average numbers of service calls and
the claimed number of laborers of a randomly selected
20% of captcha-solving services. It is a conservative
estimate since some of the services, e.g., ruokuai,
deliberately report a small number of laborers to avoid
suspicion. Since there exist at least 152 active captcha-
solving services, the total number of laborers in the
underground market is estimated to be in excess of
562 400.

7.2 Landscape of captcha-solving services

To better understand the underground market, we
briefly analyze the entire landscape of these captcha-
solving services. To be specific, we survey the
categories of captcha that the underground market
supports and the potential customers for these services.

7.2.1 Supporting services

The underground market supports the solution of
various types of captchas, including text captchas,
image captchas, and video captchas. Table 9 shows five
commonly used captcha types, representative schemes,
and corresponding captcha-solving services. Among
the 152 services, more than 90% support text and
image captchas, especially ReCaptcha. For example,
both 2captcha and AntiCaptcha claim to have sufficient
human labor to solve ReCaptcha. Based on this
analysis, we conjecture that the underground market for
captcha-solving services is quite mature and can resolve
every type of captcha.

Interestingly, we find that some underground
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Fig. 11 Number of laborers on popular captcha-solving
service platforms.
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Table 9 Captcha solving services.

Captcha type Representative Represeptative
scheme service
Text captcha  SinaWeibo®, ReCaptcha  ruokuai, 2captcha
Image captcha Clﬁg%g;gg:y’ ruokuai, AntiCaptcha
Audio captcha ReCaptcha ruokuai
Game captcha FunCaptcha® AntiCaptcha, jsdati®
Math captcha Bilibili® ruokuai, jsdati

Notes: (@ SinaWeibo, https://weibo.com.
@ FunCaptcha, https://www. funcaptcha.com/.
@ jsdati, https://www.jsdati.com/.
@ Bilibili, https:/live. bilibili.com.

services, e.g., jsdati and ruokuai, deny that they provide
captcha-solving services. Instead, as shown in Fig. 12,
they claim on their websites to provide other services,
including image recognition, advertising identification,
and porn identification.

7.2.2 Demand for services

The underground market has a great many potential
customers, including account enumeration attackers,
third-party services, malicious promotion apps, and
coupon stealers, etc. This equates to a huge market
demand for underground captcha-solving services.
Below, we analyze three found representative customer
types and their demands on captcha-solving services.
Agent apps. Agent apps act as agents for users,
providing fee-paying services that help a user to
accomplish some tedious tasks. The bots utilized
by these applications generate a huge demand for
captcha-solving services. A recent news report
claims that, during the spring festival in China,
43% of all online reservations made on the railway
ticketing system, 12306.cn, might come from agent
apps (www.xinhuatone.com/zt/12306/dagaozi-1/).
According to this report, as many as 1000 million
tickets might be purchased by agent apps, given
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Fig. 12 ruokuai’s denial of providing captcha-solving
services.
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that 12306.cn’s sales volume in the spring festival
is 2345 million. We can therefore make a rough
estimate that the demand for captcha-solving
service reaches 1000 requests in a 15-day period
over the duration of the Chinese spring festival.
This analysis suggests that, in the case of agent
apps, there is a O(billion)-scale market demand for
underground captcha-solving services. Moreover, since
a reservation costs $5 per railway ticket according to
Ctrip(trains.ctrip.com/TrainBooking/SearchTrain.aspx),
the economic scale of the underground ticket
reservations could reach $5 billion.

Malicious promotion apps. Malicious promotion
apps provide various fake online behaviors (e.g., fake
visits, fake “likes”, and fake purchases) to miscreant
users, to create a false impression that their published
content (e.g., microblog, video, and e-commerce items)
is relatively popular. For example, the malicious app
provided by akwxll.com, manipulates over 100000
mobile phones to automatically visit pages featuring
particular e-commerce items. Based on the assumption
that each mobile phone receives one captcha per hour,
akwxll.com’s demand for captcha-solving is 2.4 million
per day, or 0.9 billion per year. This is a conservative
estimation, since receiving one captcha per hour is a
comparatively low frequency.

Coupon stealer. Coupon stealers are miscreant users
who gain an economic benefit by earning coupons
through malicious methods, e.g., registering multiple
new accounts to receive cash bonuses. Usually, they
rely on automation using bots or other software to
steal millions of coupons, which creates a demand
for captcha-solving services. A recent news item
reveals that police have arrested a criminal group
that earned profits of over $100 million by stealing
coupons (news.ifeng.com/gundong/detail 2013_12/17/
32204801_0.shtml). The direct captcha-solving demand
of coupon stealers is hard to estimate. We can only
conjecture from the O(500 billion)-scale e-commerce
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market that such demand is extremely large.
7.3 Economic income from underground services

The primary goal of underground captcha-solving
services is to obtain a high economic benefit. While
we cannot accurately determine the income of the
entire market, we can make an approximate estimate
for this income, based on a few representative service
providers.

Table 10 summarizes the five keys of the eight
representative captcha-solving services: the number of
laborers, the average speed for solving each captcha, the
price for resolving 1000 captchas, the number of service
requests per day, and the estimated daily income. Of
these items, the first four are provided directly by
service providers on their websites in oder to market
their services. Figure 13 shows the statistics given by
2captcha. The remaining item, estimated daily income,
is calculated with an equation: Number of laborers x
PPC x (7 x 24 hours/Speed) x (Price/1000). Note that
we estimate the income of ruokuai using its reported
request volume since its reported labor size is not
sufficiently accurate. The daily income of ruokuai,
yundama, and dama?2 reaches O (million)-scale, and the
income of the remaining services is slightly below 0.3
million. In addition to this statistics, we also estimate
that the average daily income of other identified
underground services is about 1.07 million from some
other identified services. The whole daily income of
the entire underground market can be estimated at over
162.64 million, given that there are at least 152 active
captcha-solving services.

2CAPTCHA STATISTICS FOR CUSTOMERS

Rate Solving speed Service load Workers online

Average solving time last minute Workers busy/Workers oniine

Fig. 13 2captcha’s statistics of captcha-solving.

Table 10 Economic analysis on captcha-solving services. PPC = price per 1000 captchas, RPD = requests per day.

Name Number of labors Speed (s) PPC ($) Number of RPD Daily income ($)
ruokuai about 15000 1-4 0.8—-7.9 about 0.9 billion about 3.6 million
yundama about 8000 0-3 1.6—-79 — about 1.85 million
hyocr about 1000 0—4 1.27 —5.56 - about 0.29 million
dama2 about 8000 0-3 0.63 —29.37 — about 1.62 million
2captcha about 2050 12 -50 0.97-2.99 — about 0.012 million
AntiCaptcha about 4500 about 8.3 0.63 —2.20 - about 0.10 million
DeCatpcha - - about 2 - -
imagetyperz about 1500 9—45 1~25 — about 0.01 million
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7.4 TImpacts on benign industries and users

Finally, we discuss an example of the underground
market’s negative impact on benign industries and
users.

Double 11 shopping carnival. Due to its promotions
and huge sales volume, Alibaba’s annual Double 11
shopping carnival is always a target for a great number
of miscreant users. It is reported that the 2017 Double
11 shopping carnival attracted hundreds of thousands
of miscreant users (www.tmtpost.com/2911463.html)
obtaining coupons and bargain goods using the coupon
stealer provided by hotniu.net. One individual among
these miscreants was able to gain as much as $32 000
in economic benefits. Based on these statistics, the
total economic loss for Alibaba could be as high
as 3 billion. Besides this loss, these miscreant users
negatively affected the shopping experience of honest
users, who would have found it more difficult to acquire
coupons or bargain-priced goods.

The huge economic loss suffered by Alibaba during
its annual Double 11 shopping carnival can be partly
blamed on the maturity of the underground captcha-
solving market. It is the large-scale human labor
provided by the underground market that allows abusive
programs and coupon stealers to bypass captcha
challenges issued by Alibaba.

8 Design Principle and Countermeasures

In this section, we distill our reflections on our own
automatic captcha-breaking techniques, our evaluation
of powerful online vision services, and our analysis of
underground captcha-solving services into a set of best
practices and design principles for website providers to
design more secure captcha services.

Scalability of captcha corpus. Scalability measures
the number of challenges a captcha scheme can generate
without sacrificing its robustness and security. Among
the 10 tested schemes, none of them is highly scalable
because they either have a limited number of hint
categories to enumerate, or their source images and
candidate images are used repeatedly. Focusing on the
scalability, we put forward three countermeasures and
design principles for defending against our attacks.

(1) Number of hint categories. A large number
of hint categories should be used; this means that it
takes more time to enumerate the hint corpus, to collect
sufficient datasets, and to train an accurate model.
Hence, this countermeasure can slow down our attack
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against selection-based image captchas.

(2) Size of source images. The repeated use of any
one single source image to generate challenges should
be avoided. The best practice is to use a single source
image for only once, which would provide adequate
defense against our attack on slide-based captchas as
our attack would be unable to detect the puzzle region.
However, this strategy may also increase the security
cost.

(3) Number of candidate images. A broad range of
candidate images should be used, and candidate images
should belong to categories that are excluded from the
hint. This countermeasure might increase the number
of labeling errors produced by pre-trained classification
models, therefore reducing our attacks’ success rate.

Risk analysis. Risk analysis should be performed on
simple captcha scheme to evaluate the possibility that
captcha solution has been derived by abusive programs.
For Tencent SlidePuzzle, as an example, our attack will
be mitigated if a risk analysis is performed on the slide
trajectory.

Anti-recognition. To improve the security, anti-
recognition techniques could be implemented in image
captchas. We discuss four simple anti-recognition
techniques, namely distorted text hints, distorted
characters, random noise, and adversarial images.

(1) Distorted image hint. Distorted image hints
should be preferred over text hints. For those captcha
schemes that have already employed image hints, anti-
recognition techniques should be applied to the hints.
This countermeasure might make the hint more difficult
to be recognized, and therefore reduces our attack’s
success rate.

(2) Distorted character. Anti-recognition
techniques should be applied to distorted characters
drawn on the background image. For those schemes
that require a user to click specific semantic regions
on the image, an anti-recognition technique (e.g.,
overlapping, rotating) may mitigate the threat posed by
our attack.

(3) Image noise. Noise should be added to
background images. To use the example of a slide-
based image captcha, if we randomly add a deceptive
empty region then our attack’s success rate is reduced
by half. Moreover, random noise on the background
image of slide-based captchas can mitigate the threat,
since it prevents our attack from recovering the source
image.

(4) Adversarial images. Adversarial images should
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be generated that are imperceptible to humans while
fooling deep image classification models into producing
incorrect recognition results. Not only can this
countermeasure defend against our attack but it can also
mitigate the captcha threat posed by the attacks based
on online vision services. Figure 14 shows an example
of this defense, where a dog is incorrectly recognized
as flower after inserting elaborately crafted noises. The
adversarial noise is generated by FGSMP!!| with the
noise level parameter € set to 0.07 and the iteration step
parameter set to 40.

9 Discussion

Ethic issues. Most of the evaluation results and
findings of this paper are made on datasets crawled
from the public domain. While it was necessary to
perform attacks against captchas, our attacks were
designed to minimize the impact on the websites of
captcha providers. Furthermore, we have not affected
the websites in any way except for acquiring captcha
challenges.

Furthermore, we have disclosed reports of our
findings and recommendations to all of the captcha
providers involved, in an effort to help them to make
their captchas more robust to automated attacks. Only
Tencent and Netease responded to our reports, and they
also acknowledged our findings and recommendations.
We hope that the disclosure of our findings will result
in more robust captcha services.

Limitations. We believe our work developing and
evaluating powerful captcha attack frameworks can
be improved in many perspectives. We discuss some
limitations of this work below, along with suggestions
for future work.

First, we focus on the security of three categories
of popular image captchas, and propose simple yet
powerful attack frameworks. Also, we evaluate our
attacks against 10 real-world captcha schemes, and
reveal some of their design flaws. Although our research
is useful and effective, it is limited in scope and it might

(a) Original image (b) Elaborately crafted (c) Adversarial image

noises

Fig. 14 A defense example of adversarial image.

therefore be useful to consider more captcha categories
and schemes.

Second, these three attack frameworks still have the
potential for improvement. None of the three attacks are
fully automated, with each requiring preparatory steps
(offline analysis) to train specific image classifiers or
recover source images. We have not built a large captcha
image corpus or design fully automated attacks. For
SelAttack, we train the image classification model on a
small labeled dataset of images. Therefore, the success
rate of SelAttack could be improved by training a more
accurate image classification model. For SliAttack, we
have implemented four simulation functions that are
very effective in bypassing the malice detection of
real-world captchas. Among these, the most effective
is Sigmoid, which achieves the highest success rate
of over 0.96 on all the tested schemes. Nonetheless,
additional simulation functions or other possible human
behavior simulation methods could be devised to
achieve better performance in bypassing the malice
detection. For CliAttack, its success rate is limited by its
Chinese character recognition accuracy. Therefore, our
attack’s success rate on click-based captchas could be
improved by a more elaborate recognition model trained
on a large-scale dataset of labeled distorted characters
from a variety of fonts.

Third, to evaluate three attacks, we tested them
against 10 representative real-world captchas. In
practice, other schemes of selection-based, side-based,
and click-based captchas may exist, and it would be
useful to consider additional image captcha schemes
and evaluate our attacks on them.

Fourth, our measurement study on the underground
market is based on 152 identified captcha-solving
services. This measurement methodology might not
fully comprehensive or accurate. For example, we do
not measure the labor market (e.g., www.zbj.com)
supplying human labor to the underground market.
The analysis of the geolocation distribution is based
on a small set of identified services, which might not
be representative of the entire market. Hence, we
believe more dedicated research into the measurement
of the underground market for captcha-solving services
is required.

Future work directions. Our study reveals the
vulnerability of currently popular captcha schemes. To
mitigate the captcha threat, future work should be
considered in the following three directions.

Malicious API call detection. Vision service
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providers (e.g., Google, Microsoft, and Baidu) ought
to make a risk analysis on the incoming API calls.
This risk analysis may detect malicious API calls
from miscreant users for a number of improper
uses, e.g., labeling candidate images of captchas and
recognizing distorted characters. Therefore, one future
work direction is to propose and deploy a risk analysis
system for online vision services.

Underground market detection. While the captcha
threat posed by human attacks is difficult to defend
against, we can turn to monitoring and detection
of underground captcha-solving services, thereby
mitigating the threat at its roots. Recently, Liao et al.[’?!
have developed a prototype system, BarFinder,
to automatically detect repositories
by analyzing the topological features of online
repositories. Motivated by BarFinder, another future
research direction is to develop a detection tool that
can automatically find underground captcha-solving

malicious

services.

More secure authentication. Computer vision
and machine learning techniques have advanced
to a stage that makes existing schemes for the
automated distinction of human users from bots
seem fruitless. Much recent work focuses on
various authentication methods, e.g., photo-based
authentication schemes**! and liveness detection-based
authentication'?*!. Motivated by Uzun et al.’*, who
proposed a liveness detection captcha system called
rtCaptcha, another future work direction is to design a
robust captcha scheme based on voice authentication,
video authentication, etc.

10 Conclusion

In this paper, we study the security issues facing
popular real-world image captchas. To this end,
we propose three proof-of-concept attacks against
selection-based captchas, slide-based captchas, and
click-based captchas. We evaluate our attacks against
10 popular real-world captcha schemes, provided
by google.com, tencent.com, etc., and successfully
break all of them. We also compare our attacks with
two previous methods, nine online image recognition
services, and eight captcha-solving services that employ
human labor. The results show that our attacks pose
a significant and realistic threat to various real-world
image captchas. With the goal of aiding the design of
more secure captchas, we distill our reflections on our
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attacks and our evaluation of recognition services and
underground captcha-solving services into a set of best
practices and design principles for website providers.
We believe that our study in this paper will be highly
useful for secure image captcha design.
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